As reported in our previous study 21, introduction of mutations in three tyrosine residues of the FcRβ-ITAM into mast cells drastically reduces
tyrosine phosphorylation of FcεRI-dependent proximal signaling molecules, but the phosphorylation does not completely disappear. Therefore, we believe that adenosine stimulation elicits slight phosphorylation of Gab2 in αβFFFγ2 mast cells but not in FcεRI-negative BMMC (Fig. 6B). Importantly, however, Gab2 phosphorylation in response to antigen or adenosine was considerably reduced in αβFFFγ2 mast cells. We speculate that reduced Gab2 phosphorylation may explain why αβFFFγ2 cells show Pifithrin-�� defects in PI3K-signaling and degranulation. Also, we currently presume that NTAL participates in adenosine-induced tyrosine phosphorylation of Gab2 by acting as upstream signaling molecules because https://www.selleckchem.com/products/Trichostatin-A.html NTAL as well as Gab2 was phosphorylated by adenosine stimulation. In human, omalizumab, an anti-IgE antibody is now used for treatment of allergic asthma. The anti-IgE therapy successfully improves allergen-induced airway hyper-responsiveness in patients with asthma 41–43. These findings suggest that IgE-FcεRI-mast cells axis, but not exacerbation factors themselves, is responsible for allergic airway inflammation. We demonstrated that FcRβ is a positive regulator of the degranulation response synergistically elicited by low-dose antigen and adenosine. We believe that
our findings will provide a novel useful information for a promising therapeutic strategy against allergic inflammation. Anti-FcRβ mAb (clone JRK; the hybridoma was a kind gift from Dr. Juan Rivera, NIH, USA) was prepared in our laboratory. Anti-TNP IgE (IgE-3) and FITC-conjugated anti-mouse IgE (R35-72) mAb were purchased
from BD Biosciences (San Diego, CA, USA). Anti-DNP IgE mAb (SPE-7), IB-MECA, and adenosine were purchased from Sigma (St. Louis, MO, USA). Anti-Derf IgE mAb was kindly provided by the National Agriculture and Food Research Organization (Tokyo, Japan). TNP-BSA (25 mol TNP mTOR inhibitor per mol of BSA), DNP-BSA (30 mol DNP per mol of BSA), and Derf extracts were purchased from LSL (Tokyo, Japan). Monovalent hapten DNP-lysine was purchased from Research Organics (Cleveland, OH, USA). Wortmannin was purchased from Calbiochem (San Diego, CA, USA). Recombinant murine IL-3 and SCF were purchased from PeproTech (Rocky Hill, NJ, USA). BAPTA-AM was purchased from BIOMOL (Pennsylvania, PA, USA). Antibodies to Lyn, Gab2, and Non-T cell activation linker (NTAL) (NAP-07) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). All antibodies to phosphorylated proteins, as well as antibodies against ERK1/2, and PKB, were purchased from Cell Signaling Technology (Beverly, MA, USA). Fyn−/− (RBRC01000) mice 44 were provided by RIKEN BRC, which is participating in the National Bio-Resource Project of the MEXT, Japan.