In our study the oral supplementation with BCAAem for four weeks was associated
with a minor change of the 2-DE pattern profile as only 10 spots out of 500 appeared differentially expressed between supplemented and unsupplemented mice. In particular the upregulated spots were identified as Apolipoprotein A-I, Complement factor B, Complement C3, Immunoglobulin light chain Temsirolimus clinical trial whereas the downregulated spots were Alpha-1-antitrypsin and an unidentified protein. Apolipoprotein A-I is a major protein component of high density lipoprotein (HDL) in the https://www.selleckchem.com/products/LY2603618-IC-83.html plasma and participates to the reverse cholesterol transport (RCT) from tissues to liver where it can be excreted directly into the bile or metabolized into bile salts before excretion [7, 8]. Lipid-poor Apo A-I/HDL are known to act as acceptors for
cellular lipids, and lipid efflux from cells can be mediated via cell surface proteins (ABCA1, ABCG1 and SR-BI) [9]. RCT represents the foremost mechanism underlying the anti-atherogenic effects of Apo A-I. Apart MK-0457 datasheet from its participation to the RTC HDL/Apo A-I might exert their anti-atherogenic effects through several other mechanisms. For example, it has been demonstrated that HDL/Apo A-I have anti-inflammatory activity [10] being capable to reduce oxidized lipids and its inflammatory effects [11, 12]. In experimental studies using atherosclerosis-susceptible mice (inbred C57BL/6, used in the present study), it was observed
that transgenic overexpression of human ApoA-I significantly protected from development of early atherosclerotic lesions [13]. Similarly, overexpression of human ApoA-I in apoE-deficient transgenic mice suppressed early atherosclerotic lesions [14]. Furthermore, knocking out apoA-I DCLK1 resulted in an accelerated atherosclerosis development in several animal models (i.e. the human apoB-transgenic female mice; the LDL receptor-deficient; the LDL receptor/apoE-deficient mice) [15, 16]. Taking into account that increasing ApoA-I production is now considered a target for coronary heart disease (CHD) risk reduction, beside pharmacological agents, several studies have focused on nutritional compounds affecting serum apoA-I concentration. For instance it has been found that, saturated fatty acids (SAFAs) and cis-monounsaturated fatty acids (cis-MUFAs), lecithin (consisting of three phospholipids; phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI)) and moderate amounts of ethanol [17] increase serum ApoA-I concentrations [18] but the mechanisms underlying these changes remain to be fully elucidated. Beside the energy-delivering nutrients diverse micronutrients, such as minerals (e.g. zinc, magnesium, and vanadate) and vitamins (e.g.