2006 (Fig. S3), which might explain why CyanoQ had not until now been detected in isolated His-tagged PSII complexes. In contrast, we have so far been unable to find conditions where CyanoP remains fully attached to PSII complexes. CyanoQ is a likely lipoprotein in T. elongatus Like the situation Selleck Repotrectinib in Synechocystis (Ujihara et al. 2008), both CyanoP and CyanoQ from T. elongatus contain a characteristic lipobox sequence, as detected by Prosite (De Castro et al. 2006), suggesting that they might be processed at the N-terminus and anchored to the membrane via lipidation of a cysteine residue (Fig.
S4). CBL0137 molecular weight Previous membrane washing experiments using either a high-salt treatment (2 M NaCl or 1 M CaCl2) or an alkaline treatment (pH 12.0), coupled with immunochemical detection, have shown that CyanoP
is tightly bound to the membrane consistent with its assignment as a lipoprotein, whereas the non-lipidated extrinsic PsbO subunit is more easily removed (Michoux et al. 2010). Analysis of the same samples revealed that CyanoQ behaved like CyanoP and the lipidated Psb27 subunit of PSII (Nowaczyk et al. 2006) and was more resistant to extraction than PsbO (Fig. S5). Expression and crystallisation of the CyanoQ protein from T. elongatus CyanoQ in Synechocystis and T. elongatus are relatively divergent with only 31 % sequence identity (Fig. 3 and Fig. S4). To gain insights into the structure SIS3 of CyanoQ from T. elongatus, a Venetoclax cleavable N-terminal His6-tagged derivative lacking the predicted lipidated Cys24 (Fig. 3) residue was over-expressed in E. coli and the protein purified by immobilised nickel-affinity chromatography to near homogeneity (Fig. S6a). The His-tag was removed by thrombin
cleavage and CyanoQ was re-purified and concentrated to 10 mg/ml (Fig. S6b). The predicted product contains residues 25–152 of CyanoQ plus 5 additional residues (GSELE) at the N-terminus. Crystallisation screens, performed using hanging drop plates, resulted in the formation of crystals, which were further optimised to grow in 1.8 M ammonium sulphate (Fig. S6c). Fig. 3 Sequence alignment of CyanoQ from T. elongatus, Synechocystis and PsbQ from spinach. Secondary structures are shown for CyanoQ from T. elongatus (3ZSU) and PsbQ from spinach (1VYK). Zinc-binding sites and lipidated cysteine residues are highlighted in green and yellow, respectively. Predicted signal peptides for CyanoQ are boxed in black. Numbering according to CyanoQ sequence from T. elongatus. Absolutely conserved and similar residues are shown as white letters on red background and red letters on white background, respectively, as calculated by ESPript (Gouet et al.