The significantly better results during the RT may have been skew

The significantly better results during the RT may have been skewed due to the fact that this was their second time performing this type of test during the RT condition

and may have known more about what to expect and were motivated to improve their reps to fatigue from their previous test. Another possible SIS3 explanation for the bench press results is that the calculated effect size was low. However, for both athletes and physically fit individuals, the ability to train longer and harder is important. For athletes, a few seconds can mean the difference between first and second and one last burst of power can mean scoring the winning points. Therefore, the improvements for the subjects are relevant to their environments. The temperature of the COLD water trial was chosen to be representative of water stored in a general household refrigerator DZNeP in vitro and RT was chosen to be representative of the room temperature. We found that the COLD water trial PU-H71 mw resulted in significantly less of a change in body temperature from pre-exercise session to post-performance testing after a 60 minute exercise (p=0.024). The

change was 1.1°C (±0.8) in the RT condition and 0.8° (±0.6) in the COLD condition; therefore, we have found that ingestion of a cold beverage significantly improves the body’s ability to maintain core temperature. These findings are similar to that of Armstrong et al., Lee et al. and Szlyk et al. [6, 9, 10], however, these studies were conducted in the heat at 40°C, 35°C and 40°C, respectively. Although there was not a significant benefit of COLD water in the performance tests measured, the COLD water clearly helped the participants to maintain core body temperature during exercises, which may have other positive impacts. Current literature also reports that

a rise in core temperature Progesterone can significantly impede performance [1]. There is debate as to the core temperature threshold where a decrease in performance starts to occur. Core temperatures at fatigue have been reported to be between 38.4°C and 40°C [2, 16]; however, many studies report that exhaustion occurs well below 40°C and that the variability may be due to training status, body composition, or various core temperature collection methods [2]. Burdon et al., evaluated performance during a 90 minute steady state exercise session in the heat and reported final rectal temperatures of 38.3°C for their COLD group and 38.5°C for their thermoneutral group [1]. In our study, the maximum core temperature readings were at 37.98°C ± .51 and 37.89°C ± .64 for the RT and COLD groups respectively, which are lower than studies done in the heat and below previously reported thresholds for fatigue.

1999; Hopkinson et al 2000) The third gap is located between di

1999; Hopkinson et al. 2000). The third gap is located between different disciplines of science, thus it is a disciplinary gap. One particularly booming field 4SC-202 of biodiversity research deals with the analysis of potential consequences of biodiversity loss for ecosystem processes such as seed dispersal or element cycling (e.g. Hooper et al. 2005). While in this functional biodiversity research

species loss serves as the starting point, the questions addressed are usually generic, e.g. related to investigate whether complex ecosystems generally function differently from more simple ones. To answer such questions, researchers often apply strictly controlled experiments, either in the field or in contained laboratory microcosms, e.g. by artificially creating (plant) communities with different levels of diversity and/or structural complexity (e.g. Schmid and Hector 2004). Biodiversity Enzalutamide experiments provide innovative research platforms that may generate hundreds of papers, such as in the case of the Jena Experiment (Roscher et al. 2004). A second recent approach in biodiversity research is that of comparative studies in real landscapes, with plots that are managed differently. Land use is a main driver of biodiversity loss

and comparing the effects of land use on biodiversity and ecosystem processes, such as in the Biodiversity Exploratories (Fischer et al. 2010), again provides a platform for interdisciplinary research that potentially yields outcomes relevant for conservation. However, there appears to be a disciplinary gap between fundamental biodiversity science and conservation science that does not just include differences in the Baricitinib topics being addressed, but apparently there are also different subsets of scientists addressing the different topics. While scientists conducting functional biodiversity research often argue that their work is relevant

to conservation (Hector et al. 2001), this is regularly questioned (Srivastava and Vellend 2005). As a consequence, the importance of functional biodiversity research for conservation is often reduced to providing a general argument for why conservation is necessary for humankind, such as in the Millennium Ecosystem Assessment that classified the ecosystem services that are potentially adversely affected by a loss in biodiversity (Millennium Ecosystem Assessment 2005a, b). Another example is given by population genetics where fundamental research often focuses on the genetics of natural indigenous grazers, while applied conservation research focuses, for example, on the mechanistic effect of grazing by domestic animals on plant recovery in nature PF-04929113 research buy reserves. A link between these types of research is often lacking.

As all subjects were resistance trained

As all subjects were resistance trained BIX 1294 concentration men, all had a full understanding of the described feeling. A circumference measure of the upper torso was also taken twice using a tension regulated tape measure (across the nipple line with the

shirt removed), and the mean of two measures was recorded. Subjects stood relaxed during these measures with their arms at their sides. These exact measures for muscle pump and circumference were taken a second time, within five minutes of completing the exercise protocol. Subjects then consumed their assigned condition and prepared for the performance tests. During this time, subjects were fitted with a heart rate monitor to be worn during the entire exercise test protocol. Following the required time (60 minutes for GlycoCarn® and 30 minutes for all other conditions), the performance tests were performed in the order described below. No other food or calorie-containing Selleck AC220 drinks were allowed during testing, but water was allowed ad libitum for the first session

and matched for all conditions and days of testing. Although water intake was matched for each subject for each condition, we did not measure hydration status of subjects. This may be considered a limitation of the present work, as hydration status has been reported to influence the hormonal environment associated with acute resistance exercise [17], which could have possibly influenced our outcome measures. Performance Testing As a measure of muscular power, bench press throws were performed using the ProSpot® device. Following a warm-up of 10% of their predetermined 1RM, subjects performed three throws using 30% of 1RM. Ninety seconds of rest was provided between each throw. The best attempt of the three throws was recorded and used in the data analysis. A detailed description

Oxaprozin of this assessment is provided elsewhere [18]; however basic procedures were as follows. Kinetic and kinematic data were acquired through the combination of a modified floor scale (Roughdeck, Rice Lake Weighing Systems, Rice Lake, WI) and a linear velocity/position transducer (VP510, Unimeasure, Corvallis, OR). The linear transducer was mounted superior to the H 89 barbell and was centrally tethered to the barbell. Measurements of force and velocity were measured directly by the modified floor scale and linear transducer, respectively. Power was calculated indirectly via inverse dynamic equations within our acquisition software (DataPac 5). Following the bench press throws, a sensor was placed on subjects’ dominant arm anterior deltoid muscle for a measure of muscle tissue oxygen saturation using Near Infrared Spectroscopy (NIRS), as described below. Subjects then performed the bench press test which involved 10 sets in the Hammer Strength™ supine bench press exercise using a load equal to 50% of 1RM.

Among these cytokine-based gene therapies, an adenovirus that exp

Among these cytokine-based gene therapies, an adenovirus that expresses both interleukin (IL)-12 and granulocyte-macrophage colony-stimulating-factor (GM-CSF) has been proven to be very effective in treating several tumors

[4, 5]. However, current adenoviruses deliver constitutive IL-12 gene expression, which causes serious normal tissue toxicity [6]. GM-CSF is a growth factor capable of enhancing antitumor activity by activating dendritic cells (DCs) to improve antigen presentation. GM-CSF can also activate macrophages and induce the release of tumor necrosis factor (TNF) [7] to achieve an antitumor effect. In addition, www.selleckchem.com/products/Acadesine.html GM-CSF can indirectly stimulate T-cell activation via interleukin-1 release [8]. However, increased cellular GM-CSF expression also leads to counter-regulatory immune responses to decrease the expansion of cytotoxic T cells (Tc), thereby limiting its antitumor activity [7]. In contrast, IL-12 has been shown to exert potent immunostimulatory effects on certain helper T cells as well as cytotoxic T lymphocytes (CTL) and natural killer (NK) cells [9]. Therefore, the combined use of GM-CSF and IL-12 can counteract the counter-regulatory role of GM-CSF on Tc and increase

the immune benefits of GM-CSF. Human IL-12 is a disulfide-linked heterodimer composed of 35 and 40 kDa subunits. Preclinical studies and clinical trials of IL-12 gene therapy showed that this treatment can induce remarkable anti-tumor response in various tumors, check details including melanoma, sarcoma, and adenocarcinoma [3]. However, both preclinical and clinical tests revealed that IL-12 gene therapy can induce highly toxic side effects [3]. This is because high constitutive

IL-12 expression increases IFN-γ production [10]. Thus, IL-12 expression in gene therapy requires regulation. However, the current adenovirus coexpressing GM-CSF and IL-12 genes does not account for the regulation of IL-12. Heat-based gene regulation is a ubiquitous stress response to heat shock IKBKE in mammalian cells. Based on this feature, heat shock protein 70 promoter (hsp70B) has been widely used in gene therapy to control gene expression [6]. The pharmacokinetics of GM-CSF and IL-12 production as well as possible interactions between constitutive GM-CSF expression and heat-induced IL-12 expression should be investigated before clinical use. However, there is the dilemma that IL-12 has a restrict species-specificity. For example, human IL-12 shows no activity in animal models and mouse IL-12 has no activity in human. Although the efficacy and toxicity of sustained human IL-12 expression cannot be evaluated in an animal model, the expression pattern of the adenoviral vector must be first tested in an animal model before entering clinical trials. Currently, gene therapy with combined GM-CSF and IL-12 has been established in several kinds of tumors using adenovirus to click here express constitutive GM-CSF and IL-12 levels.

The cells were then concentrated by centrifugation and diluted to

The cells were then concentrated by centrifugation and diluted to a concentration of 50–100 μg Chl a/ml. 10 μg plasmid DNA

dissolved in sterile distilled water were added to ice-cooled microcentrifuge tubes followed this website by 40 μl of concentrated cell culture. The cooled cell suspensions were transferred to an ice-cooled electroporation cuvette (2-mm electrode gap, Eppendorf) and exposed to a single electrical pulse. The pulse was Rigosertib nmr delivered by a Gene-Pulser Xcell Microbial System (Bio-Rad Laboratories) set at 25 μF, 300 Ω and 1.6 kV. Immediately following the discharge, the suspensions were cooled on ice for about 5 min and thereafter transferred to culture flasks, containing ammonium supplemented growth medium, and left over night to recover. The cells were harvested and plated on ammonium supplemented, ampicillin containing plates. The plates were kept at low illumination (2–3 μmol of photons m-2 s-1) and after 2 to 3 weeks of selection, positive colonies were picked

and transferred to liquid medium supplemented with ammonium and ampicillin as detailed above. When the colonies had adjusted to the transition from growing on plates to liquid medium they were kept at standard illumination and transferred to plain growth medium to develop heterocysts. The constructs in the transformed Selleck Veliparib cultures were confirmed by colony PCR. The primers used for the colony PCR (pSUN202 seq primer forward and reverse) anneal to the vector sequences flanking the inserted promoter region and hence the product spans the full length of the insert (Table 1). Fluorescence and luminescence measurements Fluorescence emission of GFP was measured from whole cells (100 μl N. punctiforme culture at a concentration of 30 μg Chl a/ml) with an excitation wavelength of 488 nm and an emission wavelength of 520 nm using a Molecular Imager PharosFX Plus (Bio-Rad Laboratories). Luminescence from luciferase activity was induced by the addition

of the substrate Decanal Histone demethylase (n-Decyl Aldehyde, Sigma) to the cyanobacterial suspension. To 100 μl N. punctiforme culture (at a concentration of 30 μg Chl a/ml) 5 μl of a Decanal mixture was added. The mixture consisted of 7.8 μl Decanal, 500 μl Methanol (Fluka) and 500 μl distilled water. Light emission was monitored with a Molecular Imager ChemiDoc XRS System (Bio-Rad Laboratories). Fluorescence and luminescence measurements were performed at room temperature. Measurement data was corrected to the background (cells containing empty vector) and normalized to the chlorophyll a concentration of the samples. All measurements within one experiment were made in triplicate and performed at least three times using two independent clones. The clones containing the constructs pPprbcL-gfp and pPprbcL-lux were used as positive controls. Localization of GFP fluorescence was viewed in a fluorescence microscope (Leica DMRXE, Leica microsystems) with an excitation wavelength of 460–500 nm and an emission wavelength of 512–542 nm.

Reuterin and other anti-pathogenic

factors may be importa

Reuterin and other anti-pathogenic

factors may be important for maintaining a healthy gut microbiota by preventing intestinal overgrowth by other commensal and pathogenic microorganisms. Recently, the addition of L. reuteri ATCC 55730 or reuterin to the intestinal microbiota was shown to reduce the E. coli population in an in vitro fermentation model [40]. Thus, antimicrobial compounds like reuterin may have a fundamental role in shaping and modeling the composition and spatial architecture of the gastrointestinal microbiota. L. reuteri biofilms produced reuterin, indicating that probiotic VE-822 mouse L. reuteri may be protective against Tideglusib price pathogens in either the planktonic or biofilm State. Interestingly, strains that produce relatively high

quantities of reuterin are immunostimulatory when cultured as planktonic cells. In vivo, immunostimulation by L. reuteri may promote colonization and biofilm formation of commensal lactobacilli, and reuterin could prevent opportunistic bacteria from establishing a niche. Hypothetically, once see more the immunostimulatory strains are established on the mucosal surface, TNF stimulation is diminished, and higher quantities of reuterin are produced. Elevated quantities of reuterin adjacent to the mucosa may effectively alter surrounding commensal microbial populations and prevent colonization and adherence by pathogenic bacteria. Biofilms are relatively resistant to several antimicrobial agents when compared to planktonic cultures [41]. The enhanced resistance of biofilms to antimicrobial compounds may explain, in part, the resistance of L. reuteri biofilms to reuterin and elevated amounts of reuterin produced by these biofilms, as described in this study. While the growth conditions used for the flow cell and planktonic cultures mafosfamide differed, similar probiotic activities by each L. reuteri strain were observed. TNF inhibitory activities and reuterin production of L. reuteri were also consistent when biofilms (in multiwell plates) and planktonic cells were cultured using the same growth

conditions. Although these experiments were conducted with biofilms grown in vitro on abiotic surfaces, biofilms with probiotic function may be important for delivery of beneficial effects in the mammalian host. A mutant strain of L. crispatus, unable to bind mucus and adhere to the colonic mucosa, did not have a protective effect in a murine colitis model compared to the wild type aggregating strain even when the bacteria were continuously supplied to mice [42]. Mucus-binding ability may be important for probiotics to adhere to the mucosal surface and form biofilms within the intestine. Defects in cell surface features may affect biofilm formation and the abilities of probiotics to persist and colonize the intestine in vivo. L.

CrossRef 8 Volfkovich YM, Sosenkin VE, Bagotzky VS: Structural a

CrossRef 8. Volfkovich YM, Sosenkin VE, Bagotzky VS: Structural and wetting properties of fuel cell components. J Power Sources 2010, 195:5429.CrossRef 9. Volfkovich YM, Sakars AV, Volinsky AA: Application of the standard porosimetry method for nanomaterials. Int J Nanotechnol

2005, 2:292.CrossRef 10. Volfkovich YM, Bagotzky VS: The method of standard porosimetry: 1. Principles and possibilities. J Power Sources 1994, 48:327.CrossRef 11. Volfkovich YM, Bagotzky VS, Sosenkin VE, Blinov IA: The standard contact porosimetry. Colloids Surf A: Physicochem Eng Aspect 2001, 187–188:349.CrossRef Selleckchem Ulixertinib 12. Szczygieł J: Optimising the porous structure of heterogeneous reforming catalysts with a globular model of the grain. Comp Chem Eng 2011, 35:2334.CrossRef 13. Gierak A, Leboda R, Tracz E: Topography and morphology of the carbon deposit obtained by pyrolysis of methylene chloride on a silica gel surface. J Analyt Appl Pyrolysis 1988, 13:89.CrossRef

14. Leboda R, Mendyk E, Gierak A, Tertykh VA: Hydrothermal modification of silica gels (xerogels) 2. Effect of the duration of treatment on their porous structure. Colloids and Surfaces A: Physicochem. Eng Aspect 1995, 105:191.CrossRef 15. Jones FE, Schoonover RM: Handbook of Mass Measurements. London: CRC Press; 2002.CrossRef 16. Helfferich F: Ion Exchange. New York: Dover; 1995. 17. Berezina NP, Kononenko NA, Dyomina OA, Gnusin NP: Characterization of ion-exchange membrane materials: properties vs structure. Adv Colloid

Interface Sci 2008, 139:3.CrossRef 18. Brinker CJ, Scherer GW: Sol–Gel Science: The Physics and Chemistry ZD1839 price of Sol–Gel Process. Amsterdam: Elsevier; 1990. 19. Alves-Rosa MA, Martins L, Pulcinelli SH, Santilli CV: Design of microstructure of zirconia foams from the emulsion template properties. Soft Matter 2013, 9:550.CrossRef 20. Guinier A, Fournet G: Small-Angle Scattering of X-Rays. New York: Wiley; 1955. Olopatadine 21. Fagherazzi G, Ploizzi S, Bettinelli M, Speghini A: Yttria-based nano-sized powders: a new class of fractal materials obtained by combustion synthesis. J Mater Res 2000, 15:586.CrossRef 22. Sastry PU, Sen D, Mazumder S, Chandrasekaran S: Fractal selleckchem behavior of nanocrystalline ceria–yttria solid solution. J Solid State Chem 2003, 176:57.CrossRef 23. Volfkovich YM: Influence of the electric double layer on the internal interface in an ion exchanger on its electrochemical and sorption properties. Soviet Electrochemistry 1984, 20:621. 24. Robinson RA, Stokes RH: Electrolyte Solutions. Mineola NY: Dover; 2002. 25. Walsh F: A First Course in Electrochemical Engineering. London: Alresford Press; 1993. 26. Parsons R: Handbook of Electrochemical Constants. London: Butterworth Scientific Publications; 1959. Competing interests The authors declare that they have no competing interests.

It is important to note that insects consume plant leaf material

It is important to note that insects consume plant leaf material containing a variety of endophytic species in addition to secondary metabolites produced or induced by these fungi. Accordingly, interactions between these fungi within leaf tissues may affect secondary metabolite profiles and thus insect feeding and fitness (Gange et al. 2012). Marine-derived fungal-host interaction Marine invertebrates such as sponges, ascidians and soft corals are well known to house numerous microorganisms within their tissues including fungi which may be detected

directly by microscopy or indirectly by metagenomic surveys (Olson and Kellogg 2010). They were LY333531 cell line found to have physiological

and ecological roles for the fungal-host consortium which comprise nutritional enhancement, stabilization of host skeleton, and secondary metabolite production. However, compared to terrestrial fungi, which were intensively investigated over the past decades, marine fungi still remain an underexplored group in the marine habitat and only very few reports can be found in the literature, which is in sharp contrast to their bacterial counterparts (Zhou et al. 2011b). Sponge driven currents produced selleck kinase inhibitor during filter feeding result in inhaling microorganisms from ambient seawater which mostly reside permanently in the sponge mesohyl if not phagocytised by the sponge (Thakur et al. 2004). In some cases such inhaled microbes may develop Morin Hydrate sponge-specific associations which can be maintained by vertical transmission (Taylor et al. 2007). It was reported that microorganisms may account for up to 40 % of sponge volume and greatly selleck influence sponge biology, chemistry and evolution (Webster and Taylor 2012). Being soft-bodied sessile organisms not able to move and lacking a hard outer protective shell, sponges are highly susceptible to marine predators. Hence it was concluded that sponges rely on

chemical rather than on physical defence (Burns et al. 2003). Endosymbionts may contribute to sponge defence by ecological competition with pathogens for space and nutrients, parasitizing or eradicating invading pathogens, altering host physiology to prevent invasion, and stimulating host innate immune system to rapidly respond to pathogens (Selvin et al. 2010). Sponge-associated fungi may have a potential role in the chemical defence of their hosts against pathogens, predators and foulers by the production of bioactive secondary metabolites, or by supplying precursors for the biosynthesis of defence metabolites by sponges, as well as defence enzymes such as extracellular phospholipases (Taylor et al. 2007; Selvin 2009; Ding et al. 2011).

Within 24 h of exhibiting these clinical signs, some piglets

Within 24 h of exhibiting these clinical signs, some piglets ARN-509 mw progressively developed indications of central nervous system infection including trembling, excessive salivation, lack of coordination, ataxia, and seizures. Infected piglets sat on their haunches in a

“”dog-like”" position, lay recumbent and paddled, or walked in circles. The appearance of the dissected organs in selected piglets was typical of PRV infection: bleeding in meninges, oedema in the brain, bleeding spots in the lung and on the adenoids [1, 8]. Three strict criteria were imposed for the selection of piglets included in this study: 1) piglets exhibited the typical clinical signs described above; 2) piglets exhibited the expected pathology, especially in brain

and lung; 3) virus isolation, antibody identification or detection of viral antigen-positive tissues were used to confirm the organic infection by PRV, and diseases including Swine Fever (SF), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and other potential bacterial infections which could be clinically and pathologically confused with PRV infection were excluded by viral antigen, antibody identification and PCR detection. Six piglets aged from 2 to 4 days (commercial breed Landrace X Yorkshire) which were infected by PRV but not by the click here other tested diseases (see above) and 3 healthy piglets (not infected, and negative for all tests under the strict criteria used above), matched for age and breed from the same farm were used in this experiment. All experiments were carried out in strict accordance PD184352 (CI-1040) with accepted HuaZhong Agricultural University, China and governmental policies. Microarray experimental design Total mRNA samples from the brains and lungs of the 3 normal piglets were pooled for the reference mRNA. Ten independent RNA samples (6 biological GDC 0068 replicates for brain and 4 biological replicates of lung) from the 6 infected piglets were paired with the reference sample for hybridization on two-color microarrays. Using a dye-swap configuration, comparing each sample provides technical replicates to adjust for dye bias[9]. A total of 20 slides were used in

this study. RNA purification Total mRNA was prepared using Qiazol reagent (Qiagen, Crawley, West Sussex, UK) following the manufacturer’s instructions. A second purification step was performed immediately post extraction on the isolated total mRNA using the RNeasy Midi kit (Qiagen Inc., Valencia, CA) and each sample was treated with DNase (20 U of grade I DNase; Roche, Lewes, UK) to remove any genomic contamination following the manufacturer’s instructions. With a cut-off of 150 bp, 5S rRNA and tRNAs were removed from the samples by the columns, limiting interference in downstream experiments. RNA concentration and integrity were assessed on the Nanodrop ND-1000 spectrophotometer (Nanodrop, USA) and on the Agilent 2100 bioanalyzer system (Agilent Technologies, Palo Alto, CA), using an RNA 6000 Nano LabChip kit.

As also shown in Figure  2b, the total oxygen content C O for the

As also shown in Figure  2b, the total oxygen content C O for the samples initially has an increase from 3.33% to 10.92% with the increase of R H up to 98.6%, and then a downshift of C O occurs

when further increasing R H. Researchers have found that most of the oxygen atoms were incorporated into the films through post-oxidation [28]. Concerning the material structure, cavities and voids in the material are probably crucial for accommodation of oxygen molecules. Hence, the variation of C O along R H is expected to be similar to that of P V. Nevertheless, our experimental data show an interesting nonmonotonic correlation that higher P V is associated with less oxygen impurities when R H is above 98.6%, which deviates from the above expectation. And the deviation indicates that there should be some other type of defect structure overwhelmingly affecting the Blasticidin S molecular weight incorporation of the oxygen inside the films rather than voids. To fully understand the relation between the defect microstructure and the oxidation effects, it is quite necessary to investigate the structure evolution mechanism and to elucidate the hydrogen behavior in the growth process of the nc-Si:H thin film, which is a complex synergy between surface and bulk GDC-0068 reactions of impinging SiH x . XPS measurements have been further employed to

accurately investigate the Si/O surface interaction. Figure  3 displays a representative high-resolution Si 2p spectrum (from the sample with R H = 98.2%) to understand the suboxide on the film surface. The synchrotron work of Himpsel et al. [29] and Niwano et al. [30] afforded the information for all energy level fitting. The fitting components generated from the decomposition of the measured spectrum correspond to different Si bonding states. For the as-fabricated nc-Si:H materials, the Si 2p region has been routinely fitted to Si Lck 2p1/2 and Si 2p3/2 partner lines for Si4+, Si0, and intermediate states such

as Si1+ (Si2O), Si2+ (SiO), and Si3+ (Si2O3). The additional component of silicon oxide was referred as SiO2*, which is assigned to be the regular crystalline-like phase produced at the interface of SiO2-Si. This part mainly comes from the lattice mismatch of the oxide and single-crystal Si29 with its peak located at a binding energy of 0.35 eV, slightly lower than that of SiO2. It can be confirmed from the above data analysis that Si3+ does not exist in the sample, while the existence of Si1+ and Si2+ species are supported by the XPS observation. Figure 3 Typical XPS Si 2p spectrum of the nc-Si:H thin film under R H  = 98.2%. The see more splitting of 0.6 eV is shown with all the intermediate oxidation states. The inset presents the surface oxygen content as a function of R H. Moreover, we can notice from peak 3 that the nc-Si:H surface was well passivated with SiO2.