Gesele G, Linsmeier J, Drach V, Fricke J, Arens-Fischer R: Temper

Gesele G, Linsmeier J, Drach V, Fricke J, Arens-Fischer R: Temperature-dependent

thermal conductivity Dinaciclib ic50 of porous silicon. J Phys D Appl Phys 1997, 30:2911–2916.CrossRef 18. Valalaki K, Nassiopoulou AG: Low thermal conductivity porous Si at cryogenic temperatures for cooling applications. J Phys D Appl Phys 2013, 46:295101.CrossRef 19. Cahill DG, Braun PV, Chen G, Clarke DR, Fan S, Goodson KE, Keblinski P, King WP, Mahan GD, Majumdar A, Maris HJ, Phillpot SR, Pop E, Shi L: Nanoscale thermal transport. II. 2003–2012. Appl Phys Rev 2014, 1:011305.CrossRef 20. Neophytou N, Zianni X, Kosina H, Frabboni S, Lorenzi B, Narducci D: Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si. Nanotechnology 2013, 24:205402.CrossRef 21. Siegert L, Capelle M, Roqueta F, Lysenko V, Gautier G: Evaluation of mesoporous silicon thermal conductivity by electrothermal finite element simulation. Nanoscale Res Lett 2012, 7:427.CrossRef 22. Golding B, Graebner JE, Allen LC: The thermal conductivity plateau in disordered systems. In Phonon Scattering in Condensed Matter V. Edited by: Anderson AC, Wolfe JP. Berlin, Heidelberg: Springer Verlag Berlin Heidelberg; 1986. 23. Rammal R, Toulouse G: Random walks on fractal structures and percolation clusters. J Phys 1983, 44:L13-L22.CrossRef 24.

Alexander S, Orbach R: Density of states on fractals: “”fractons.”". Le J Phys – Lettres 1982, 43:L625-L631.CrossRef 25. Nakayama T, Yakubo K, Orbach R: Dynamical properties of fractal networks: scaling, numerical simulations, and buy PF299 physical realizations. Rev Mod Phys 1994, 66:381–443.CrossRef 26. Ben-Chorin M, Möller F, Koch F: Hopping transport on a fractal: ac conductivity of porous silicon. Phys Rev B 1995, 51:2199–2213.CrossRef 27. Nychyporuk T, Lysenko V, Barbier D: Fractal nature of porous silicon nanocrystallites. Phys Rev B 2005, 71:115402.CrossRef 28. Chantrenne P, Lysenko V: Thermal conductivity of interconnected silicon nanoparticles: application to porous silicon nanostructures. Phys Rev B 2005, 72:035318.CrossRef

29. Zhigunov mafosfamide DM, Emelyanov AV, Timoshenko VY, Sokolov VI, Seminogov VN: Percolation effect in structures with amorphous and crystalline silicon nanoclusters. Phys Status Solidi C 2012, 9:1474–1476.CrossRef 30. Kumar S, Alam MA, Murthy JY: Effect of percolation on thermal transport in nanotube composites. Appl Phys Lett 2007, 90:click here 104105.CrossRef 31. Ono Y, Mayama H, Furó I, Sagidullin AI, Matsushima K, Ura H, Uchiyama T, Tsujii K: Characterization and structural investigation of fractal porous-silica over an extremely wide scale range of pore size. J Colloid Interface Sci 2009, 336:215–25.CrossRef 32. Rasband WS: ImageJ. Bethesda, Maryland, USA: U.S. National Institutes of Health. imagej.nih.gov/ij/; 1997–2012. 33. Karperien A: FracLac for ImageJ. http://​rsb.​info.​nih.​gov/​ij/​plugins/​fraclac/​FLHelp/​Introduction.​htm. 1999–2013 34.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>