However, once the base-pairing between oligo-G and oligo-C took p

However, once the base-pairing between oligo-G and oligo-C took place, water and electrolyte ions (diffuse mobile layer) were displaced. The diffuse mobile layer contains high abundance of negatively charged ions that outweighed the polyanion on the DNA surface. The capacitance change was then dominated by the displacement of the diffuse mobile layer away from the electrode surface as a result of an increase in thickness and length of the capture probe layer; hence decrease in capacitance

was registered [15]. Regeneration of the modified electrode surface by injecting 50 mM NaOH was used to distrupt the hydrogen bonds between the paired DNA strands (oligo-C and oligo-G) without damaging the oligo-C (capture probe). The capacitance was then Ku-0059436 nmr returned to the original base line ready for additional measurements. Fig. HIF pathway 3 inset, shows how the capacitance change upon injection of analyte change was determined. The capacitive change was proportional to the applied concentrations of the oligo-Gs, (15-, 25- and 50-mer) as depicted

in Fig. 4. Applying higher number of oligo-G molecules, could lead to displacement of more number of electrolyte ions (the diffuse mobile layer) further away from the electrode surface, therefore a larger decrease in total capacitance was registered [28]. Nevertheless, the magnitude of registered capacitance change was also found to some extent to be dependent on the length of applied oligo-G. For instance, applying 25-mer oligo-G at electrode modified surface resulted in a capacitance shift which was approximately twice as high as that caused by a 15-mer oligo-G (Table 1). However, there was no significant difference for the capacitance change, when the same concentration of 25- and 50-mer oligo-Gs was applied Sulfite dehydrogenase on the surface. In theory,

the effect of 50-mer oligo-G was expected to be twice of that 25-mer oligo-G and three times of that 15-mer oligo-G; this is because the longer DNA molecule hybridizes on the surface, the longer the capture probe layer it becomes, then the further distance the diffuse mobile layer is displaced, which would lead to larger decrease in total capacitance. On the contrary, the bending behavior of the long molecules, like DNA, could be the explanation of the observed results for 50-mer oligo-G. The long DNA molecules exhibit intrinsic bending behavior due to various factors, such as van der Waals force and aromatic–aromatic (π–π) interaction between the bases of the same DNA molecule. Nonetheless, Kelly et al. (1998) reported that, when an electrode surface is positively charged (by applying a positive potential pulse), the intrinsic negatively charged DNA is pulled towards the electrode and hence adopts a tilted orientation [29].

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>