“
“Social life depends on developing an understanding of other people’s behavior: why they do the things they do, and what they are likely to do next. Critically, though, the externally observable actions are just observable consequences of an unobservable, internal causal structure: the person’s goals and intentions, beliefs and desires, preferences PCI-32765 cost and personality traits. Thus, a cornerstone of the human capacity for social cognition
is the ability to reason about these invisible causes. If a person checks her watch, is she uncertain about the time or bored with the conversation? And is she chronically rude or just unusually frazzled? The ability to reason about these questions is sometimes called having a “theory of mind. Remarkably, theory of mind seems to depend on a distinct and reliable group of brain regions, sometimes called the “mentalizing network” (e.g., Aichhorn et al., 2009 and Saxe and Kanwisher, 2003), which includes regions
in human superior temporal sulcus (STS), temporo-parietal junction (TPJ), medial precuneus (PC), and medial prefrontal cortex (MPFC). Indeed, the identity of these regions FDA-approved Drug Library has been known since the very first neuroimaging studies were conducted. By 2000, based on four empirical studies, Frith and Frith concluded that “Studies in which volunteers have to make inferences about the mental states of others activate a number of brain areas, most notable the medial [pre]frontal cortex [(MPFC)] and temporo-parietal junction [(TPJ)]” (Frith and Frith, 2000). Since then, more than 400 studies of these regions have been published. However, although there is widespread agreement on where to look for neural correlates of theory of mind, much less is known about the neural representations and computations that are implemented in these regions. The problem is exacerbated because these brain regions, and functions, may be uniquely human (Saxe, 2006 and Santos et al., 2006). Recent evidence suggests that there is no unique homolog of the TPJ
or MPFC (Rushworth et al., 2013 and Mars et al., 2013), making it even harder to directly investigate the neural Asenapine responses in these regions. In the current review, we import a theoretical framework, predictive coding, from other areas of cognitive neuroscience and explore its application to theory of mind. There has recently been increasing interest in the idea of predictive coding as a unifying framework for understanding neural computations across many domains (e.g., Clark, 2013). In this review, we adapt a version of the predictive coding framework that has been developed for mid- and high-level vision. Like vision, theory of mind can be understood as an inverse problem (Baker et al., 2011 and Baker et al.