The R q began with 5.88 nm for 2-nm DA and reached 21.71 nm for 9-nm DA, and then the R q was decreased to 21.14 nm with 12-nm DA likely due to the dominance of the density decrease. Figure 7 Evolution of self-assembled Au droplets. This was induced by the systematic variation of the Au deposition amount from 2 to 12 nm on GaAs (511)B. (a) 2 nm, (b) www.selleckchem.com/products/ew-7197.html 3 nm, (c) 4 nm, (d) 6 nm, (e) 9 nm, and (f) 12 nm. Au droplets are presented with AFM top views of 3 × 3 μm2 and 1 × 1 μm2. Figure 8 Summary plots and SEM images. Summary plots of (a) AH, (b) LD, (c) AD, and (d) R q of the self-assembled Au droplets on GaAs (511)B
as a function of DA. (e-h) SEM images of the resulting Au droplets with the DAs as labeled. Figure 9 shows the Au droplet evolution as a function of the DA along with the systematic annealing at 550°C on GaAs (411)B, (711)B, (811)B, and (911)B, respectively. As summarized in
Table 2, the results in terms of the size and density evolution are quite analogous to the previous two surfaces. For instance, the size of Au droplets on GaAs (411)B was gradually increased (by × 3.16 for AH and × 3.20 for LD), while the AD was progressively decreased by nearly 2 orders during the variation of the DAs from 2 to 12 nm as clearly shown in Table 2. Similar trends of Au droplet evolution on the other three surfaces can be clearly seen in Figure 9 with the comparable magnitude of changes. In general, various GaAs (n11)B show distinction in terms of the atom density, Selleckchem AZD6094 dangling bonds, and step density [29–31], and as a result, the resulting self-assembled nanostructures can show different behaviors in terms JNK-IN-8 datasheet of size and density and even configurations. However, BCKDHA in this experiment, the difference in the result appeared to be minor. Perhaps, it is because the diffusion length of adatoms has a much stronger dependency on the activation energy and substrate temperature. As mentioned, the diffusion length increases by the square root of the
product of the diffusion coefficient and residual time of adatoms ( ), and the diffusion coefficient is strongly proportional to the substrate temperature (D ∝ T sub). In this experiment, the substrate temperature was fixed at 550°C, and thus the size of the Au droplets can be increased by absorbing Au adatoms within the diffusion length as discussed. Likewise, the diffusion length can also be affected by the variation of atom density, dangling bonds, and step density. However, the difference or the effect induced by the variation of the index to the surface diffusion seems to be relatively smaller as compared to that induced by the substrate temperature [35]. Figure 9 Au droplet evolution as a function of the DA. (a- x) Self-assembled Au droplets fabricated by the variation of the Au deposition amount on GaAs (411)B, (711)B, (811)B, and (911)B. The resulting droplets are presented with AFM top views of 1 × 1 μm2.