The supersaturation of extracellular fluids with
respect to calcium and phosphate has demanded the evolution of mechanisms to counteract and inhibit ectopic deposition MI-503 supplier of mineral outside bone. The propensity to pathological calcification is thus governed by the balance between factors promoting or inhibiting this process. The phospho-glycoprotein fetuin-A (Fet-A) is a key systemic mineral chaperone and inhibitor of soft-tissue and vascular calcification.[5] Fet-A is synthesized mainly in the liver where it is glycosylated and secreted into plasma, circulating at relatively high concentrations. Fet-A knockout mice show a variety of problems associated with ectopic mineral deposition and abnormal (but
not absent) bone development, together with metabolic complications depending on the model.[6-8] In patients with chronic kidney disease (CKD), Fet-A deficiency has been associated with increased arterial calcification scores and higher mortality rates.[9-11] However, data on serum total Fet-A concentrations RXDX-106 order are difficult to interpret because of analytical issues and conflicting data.[12, 13] Recent investigation suggests a more complicated and dynamic control system for this protein. In concert with other acidic serum proteins, Fet-A mediates the formation and stabilization of high molecular weight colloidal complexes of calcium phosphate mineral termed calciprotein particles (CPP).[14] Analogous to the way in which apoplipoproteins surround and solubilize their lipid cargo, those CPP provide a pathway for the transport of mineral nanocrystals and their clearance from the circulation by the mononuclear phagocytic system.[15] Previous work in rats suggests that CPP may originate
from the bone-remodelling compartment,[16] but they may also form spontaneously in other calcific micro-environments.[17-19] Circulating CPP burden can be inferred by assessing the apparent reduction serum Fet-A concentration (reduction ratio, RR) after high-speed centrifugation.[20] Inflammation has been identified as a key driver of ectopic mineralization.[21] Macrophage-derived pro-inflammatory cytokines such as interleukin-1α, interleukin-6, tumour necrosis factor-α and transforming growth factor-β have been shown to induce the transformation of vascular smooth muscle cells (VSMC) to a synthetic osteogenic phenotype. These osteochondrocytic-like VSMC extrude calcium phosphate crystal-laden matrix vesicles that nucleate mineralization of the vascular extracellular matrix.[22, 23] Importantly, calcium phosphate nanocrystals are themselves powerfully pro-inflammatory to macrophage, and themselves promote VSMC mineralization, potentiating a vicious cycle of inflammation and calcification.