TTM has been known inhibit copper-binding proteins that regulate copper mTOR inhibitor physiology through formation of a sulfur-bridged copper–molybdenum cluster, rather than by direct chelation of copper ions [10]. In the {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| current study, TTM caused profound cessation of the growth of P. falciparum; this arrest resulted from inhibition of schizogony of the parasite. In contrast, treatment of uninfected RBCs with higher concentrations of
TTM caused only slight growth arrest. Thus, the target molecule(s) of TTM may be present predominantly in the parasite, although the molecule(s) involved in the growth arrest of the parasite remain to be determined. Also, the possibility that the excess TTM affects, directly or indirectly, various proteins that do not bind to copper, and thus causes developmental arrest of the parasite, remains to be elucidated. Chelation with Neocuproine, which selectively removes Cu1+ [11], inhibited the successive ring–trophozoite–schizont progression of P. falciparum effectively at extremely low concentration; blockage of trophozoite progression from the ring stage was shown at higher concentrations. In contrast, the growth of P. falciparum pretreated with Neocuproine was arrested only to a very small
extent, even when treated with much higher concentrations. This is quite different from the profound developmental arrest of P. falciparum maintained in the presence of Neocuproine throughout the culture period. We surmise that either the binding of Neocuproine may be reversible learn more or copper Fossariinae ions may be replenished by host cells. RBCs contain copper at levels as high as a mean value of 18 μM, although most of the copper present in RBCs is bound to the enzyme superoxide dismutase [17, 18]. Developmental arrest of P. falciparum, similar to that in CDRPMI and GFSRPMI in the presence of Neocuproine and TTM, was detected in the parasite cultured in CDM-C16alone. We have demonstrated previously, using genome-wide transcriptome profiling and various CDMs, profound down-regulation of the putative copper channel
in parasites cultured in CDM-C16alone. This was associated with the blockage of trophozoite progression from the ring stage of the parasite. In the current study, the expression of genes encoding copper-binding proteins of P. falciparum was investigated, in detail, with cultures in CDM-C16alone, CDRPMI, and GFSRPMI. Transcript levels of not only a putative copper channel, which has previously been detected by genome-wide transcriptome profiling [7], but also a copper transporter were profoundly decreased during the arrested development of the parasite at the ring stage in CDM-C16alone. The severe down-regulation of copper-binding proteins of the parasite cultured in CDM-C16alone is considered to affect copper pathways and trafficking; this maybe involved in the perturbation of copper homeostasis and developmental arrest of the parasite, similar to the growth arrest seen with TTM and Neocuproine.